Synthesis of C₅₀ Carotenoids; the Structure of Decaprenoxanthin

By AKASH K. CHOPRA, BHUPINDER P. S. KHAMBAY, HUGO MADDEN, GERARD P. MOSS,* and BASIL C. L. WEEDON (Department of Chemistry, Queen Mary College, Mile End Road, London El 4NS)

Summary Syntheses of functionalised derivatives of α -ionone have been developed which provide a route to the C₅₀-carotenoid, decaprenoxanthin.

THE absolute stereochemistry (1) has been proposed¹ for decaprenoxanthin, the C_{50} carotenoid² from *Flavobacterium dehydrogenans*. The validity of the assumption that the 1-methyl ¹H n.m.r. signals (δ 0.75 and 0.95) were comparable with the corresponding signals of *cis* (δ 0.62 and 0.78) and

in 28% yield from (2). Acid treatment $(BF_3-AcOH-H_3PO_4)$ of (5) gave 2-vinyl- α -ionone (6) in yields up to 18%; the ratio of 2,6-cis (δ 0.79 and 0.88) to 2,6-trans (δ 0.84 and 0.88) isomers varied but the trans isomer usually predominated.

Conversion of (6) into the tetrahydropyranyl ether (7), and hydroboration with $(CHMe_2CHMe)_2BH$ gave the alcohol (8), which was oxidised⁵ to the aldehyde (9) in 34%yield from (6). A Wittig reaction of (9) yielded the *trans*

trans (δ 0.78 and 0.82) α -irones³ has now been confirmed by synthesis of the isomer of decaprenoxanthin with the 2,6-trans end group.

Reaction of the ethylene acetal of (2) with ethyl diazoacetate, followed by hydrolysis, gave (3) which by chain extension⁴ was converted into (4). Acetalisation and reduction with LiAlH₄ afforded (5) as a mixture of isomers α,β -unsaturated ester (10) (65%), which with PPh₃-HCl-MeOH generated the salt (11) (48%). Reaction with the appropriate C₁₄-dial⁶ furnished the diester (12) which with LiAlH₄ gave a mixture of isomers of decaprenoxanthin (13) in which those with 2,6-trans end groups predominated [δ 0.88 and 0.92, *m/e* 704.552 (*M*⁺), calc. for C₅₀H₄₇O₂ 704.553].

We thank the S.R.C. for studentships (to A.K.C. and H.M.), the University of London for a postgraduate studentship (to B.P.S.K.), Roche Products for financial support, F. Hoffmann-La Roche for the C_{14} dial, and Professor J. A.

Elvidge, University of Surrey, for the F.T. spectrum of the final product.

(Received, 7th March 1977; Com. 218.)

¹G. P. Moss, Terpenoids & Steroids, 1973, 3, 230; A. G. Andrewes, S. Liaaen-Jensen, and O. B. Weeks, Acta Chem. Scand., 1975, **B29**, 884.

- ¹²⁷, 304.
 ² S. Liaaen-Jensen, S. Hertzberg, O. B. Weeks, and U. Schwieter, Acta Chem. Scand., 1968, 22, 1171.
 ³ V. Rautenstrauch and G. Ohloff, Helv. Chim. Acta, 1971, 54, 1776.
 ⁴ G. Saucy, R. Marbet, H. Lindlar, and O. Isler, Helv. Chim. Acta, 1959, 42, 1945.
 ⁵ J. C. Collins, W. W. Hess, and F. J. Frank, Tetrahedron Letters, 1968, 3363.
 ⁶ O. Isler, H. Gutmann, H. Lindlar, M. Montavon, R. Rüegg, G. Ryser, and P. Zeller, Helv. Chim. Acta, 1956, 39, 463.